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SUMMARY

The paper’s focus is the calculation of unsteady incompressible 2D �ows past airfoils. In the frame-
work of the primitive variable Navier–Stokes equations, the initial and boundary conditions must
be assigned so as to be compatible, to assure the correct prediction of the �ow evolution. This
requirement, typical of all incompressible �ows, viscous or inviscid, is often violated when mod-
elling the �ow past immersed bodies impulsively started from rest. Its ful�llment can however be
restored by means of a procedure enforcing compatibility, consisting in a pre-processing of the ini-
tial velocity �eld, here described in detail. Numerical solutions for an impulsively started multiple
airfoil have been obtained using a �nite element incremental projection method. The spatial dis-
cretization chosen for the velocity and pressure are of di�erent order to satisfy the inf–sup condi-
tion and obtain a smooth pressure �eld. Results are provided to illustrate the e�ect of employing or
not the compatibility procedure, and are found in good agreement with those obtained with a non-
primitive variable solver. In addition, we introduce a post-processing procedure to evaluate an alter-
native pressure �eld which is found to be more accurate than the one resulting from the projection
method. This is achieved by considering an appropriate ‘unsplit’ version of the momentum equation,
where the velocity solution of the projection method is substituted. Copyright ? 2004 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The impulsive start of bodies immersed in an incompressible viscous �uid has always been a
problem of great �uid dynamic interest, mostly because of the simplicity of its statement, see,
for instance, Lighthill [1, Section 6.1, p. 80] and the discussion by Stuart on the implications
for the unsteady boundary layer theory [2, Chapter VII, p. 349]. Owing to their idealized
nature, these �ows represent in fact a special case of evolutive problems where the boundary
values are constant for all t¿0, cf. Telionis [3, p. 79].
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From the viewpoint of the numerical solution, di�culties in the interpretation of the results
to these problems have often been encountered, since the computed �ows present a complexity
disproportioned with the simplicity of their mathematical statement. This has usually been
related to the idealized character of impulsive motion, a circumstance that has focused the
attention on the physical model of this class of problems, in order to introduce hypotheses
able to allow the solution, as described, for instance, by Karamcheti [4, Section 9.9, p. 246]
and Ashley and Landahl [5, Chapter 2].
A �rst intent of this paper is to show that in impulsively started �ows a large portion of these

di�culties is related to the mathematical consequences of the incompressibility hypothesis on
the well-posedness of the dynamic problem. In fact, the analysis of the initial boundary
value problem associated with several impulsively started incompressible �ows shows that the
compatibility condition between the initial and boundary data for the (normal components of)
velocity is violated. This does not occur in some very simple problems with purely tangential
impulsive motion of the solid boundary, whose prototype is the �rst Stokes problem. Actually,
for general incompressible �ows the ful�llment of the compatibility condition, as well as the
conditions of solenoidality on the initial velocity �eld and of zero total �ux of the velocity
boundary value, is fundamental for the well-posedness of an unsteady problem. In this respect,
simple problems with purely tangential motion of the walls cannot be considered representative
of the entire class of impulsively started �ows.
The theoretical background for the analysis of the problem is provided by Ladyzhenskaya

[6] and Temam [7] and includes the aforementioned compatibility condition, which ensures
existence and uniqueness of the solution for viscous incompressible �ows in spaces of func-
tions of suitable regularity. As a matter of fact, the presence of the compatibility condition
for �ows in domains of arbitrary shape is due only to the incompressibility hypothesis, and
therefore its mathematical consequences are relevant also for non-viscous �ows, as it will be
seen in the following.
The present paper will show that the well-posedness of the problem for impulsively started

�ows, governed by the Navier–Stokes equations in the primitive variables pressure and veloc-
ity, can be restored by creating a modi�ed initial velocity �eld, compatible with the boundary
value speci�cations. This procedure leads to a di�erent initial boundary value problem, here
solved by means of the second order projection method of Guermond and Quartapelle [8, 9],
whose main features are also recalled.
Solutions to problems with compatible or incompatible initial and boundary data will be

calculated and compared to clarify that the compatibility conditions not only have a central
position in the correct mathematical formulation of unsteady incompressible problems, but
also that their respect leads to solutions reproducing the expected behaviour of the �ow at
the very �rst instants of the simulation: this aspect cannot be underestimated since solutions
developing from incompatible data present non-physical pathologies at the beginning of the
simulation that are a consequence of the ill-posedness of the problem.
After the inclusion of the procedure enforcing compatibility, the projection method has been

extensively used to solve two-dimensional unsteady incompressible �ows around a complex
multi-pro�le airfoil at a relatively low Reynolds number and at high incidence. Some results
for the vorticity and pressure distributions are presented. Convergence tests have also been
performed on a problem with exact solution to verify that the overall method including the
start-up correction procedure achieves the theoretical rates of convergence of the �nite element
projection method.
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Another aspect investigated in the paper is the accurate prediction of the pressure �eld. As
well-known, the inf–sup condition requires di�erent orders of approximation for the variables
velocity and pressure, for which parabolic and linear interpolations are here chosen. This
means that the computed velocity �eld contains available information that can be exploited to
determine another pressure distribution di�erent from that given by the projection method. In
fact, it is possible to resort to the original, i.e. unsplit, momentum balance to obtain an equation
with the pressure gradient as the only unknown. Since Lagrangian elements are employed, the
viscous term will be expressed as the double curl of velocity with this �eld computed using
a quadratic interpolation. Therefore, the new pressure �eld can be approximated alternatively
by means of either P1 or P2 polynomials.
As a whole, the analysis developed in the paper addresses the most typical aspects associated

with incompressible CFD (ICFD): the need of correct initial and boundary data, the choice of
proper approximations for the primitive variables, both brought about by the presence of the
incompressibility constraint, the split character of the fractional-step projection method, the
second-order accuracy and unconditional stability of the adopted BDF scheme. The complete
solution algorithm to be described, including initial data pre-processing to achieve compat-
ibility and �nal solution post-processing to obtain an improved pressure �eld, is based on
standard numerical ideas and techniques to the point that we dare hope that this article might
be considered as a tutorial introduction to ICFD.
The content of this paper is organized as follows. In Section 2 the complete statement of the

incompressible Navier–Stokes problem in primitive variables is presented and speci�ed for the
problem of a multiple airfoil impulsively started from rest. Section 3 focuses on the theoreti-
cal and practical aspects of the compatibility conditions. In particular, Section 3.1 introduces
the set of compatibility conditions to be satis�ed by any well-posed problem of incompress-
ible �uid dynamics. In Section 3.2 some reasons why the compatibility condition between
the initial velocity and the velocity boundary values have been disregarded sometimes in the
literature are also discussed. Section 3.3 illustrates the theoretical and numerical procedures
used to have compatible initial and boundary data. Section 4 deals with the numerical side of
the problem. In particular Section 4.1 gives a brief description of the second-order projection
method used to obtain the solutions shown in the paper and contains an outline of the pro-
cedures for computing the vorticity and the streamlines from the velocity �eld provided by
the projection method. In Section 4.2 we introduce the proposed post-processing technique to
extract two alternative pressure �elds from the computed velocity �eld. Convergence tests are
also performed in Section 4.3 to verify the second order time accuracy of the three level BDF
projection method, in suitable norms for velocity and pressure, and to compare the precision
of the three possible pressure �elds considered in the present paper. In Section 5 the �ow
�eld and the three pressure coe�cients on the airfoils are compared with the corresponding
results provided by a non-primitive variable method [10] and some �nal results about the
importance of respecting the compatibility are presented. The last section is devoted to a few
concluding remarks.

2. PROBLEM DEFINITION FOR INCOMPRESSIBLE FLOWS PAST AIRFOILS

Let us consider the time-dependent incompressible Navier–Stokes equations formulated
in terms of the primitive variables velocity u and pressure per unit density p, denoted as
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‘pressure’ throughout, for simplicity. The �uid domain V is assumed to be a two-dimensional
region of the plane external to one or more airfoils embedded in an incompressible viscous
�uid. The evolution of such a �uid motion is described by the following initial boundary
value problem:
Find the velocity u and the pressure p (up to an arbitrary function of t, which can be

added to p) so that

@u
@t
+ (u ·∇)u=−∇p+ �∇2u

∇·u=0
u|t=0 = u0

u|S = b

(1)

where � is the kinematic viscosity, u0 is the initial velocity �eld and b is the velocity prescribed
on the boundary S of V . As far as the regularity of the data is concerned, they are assumed
to be smooth enough for the purposes of the subsequent analysis.
We are interested in the problem of the �ow past airfoils impulsively started from rest

to a constant velocity. Typically, this problem consists in an unbounded volume of �uid,
initially at rest, where an immersed body is set in motion at time t=0 with a constant ve-
locity, for example, −U towards the left, as shown in Figure 1. These conditions do not
�t within the framework of the Navier–Stokes problem (1) which requires a bounded do-
main with �xed boundaries for its spatial discretization and numerical solution. The problem
with an impulsive start of the body can however be recast in the standard form (1) by
the following transformations. First, the unbounded domain is truncated at a large but �nite
distance from the pro�le through the introduction of an external closed boundary denoted
conventionally by Sext. Then, the dynamics of the �uid is studied in an inertial frame of refer-
ence, which translates at the constant speed −U with respect to the stationary �uid, far from

−0.5 0 1 1.5
−1

0

0.3

Sa

Sext

Sext

Sext

Sext

Figure 1. Multiple airfoil in landing con�guration and nomenclature of the boundary. The small square
is a zoomed area for subsequent representation of numerical solutions.
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the airfoil. In this inertial system, the airfoil is immobile for t¿0, so that its boundary Sa is
�xed.
In the new frame of reference the initial �ow �eld will be uniform and equal to U, directed

towards the right in the �gure. This means that the initial velocity evaluated on the pro�le
Sa will be U, in the new frame. This value is however di�erent from the one prescribed on
Sa, denoted by ba, which must be zero by the no-slip and no-penetration boundary conditions
imposed on a �xed rigid wall in viscous �ows. A mismatch therefore exists between the infor-
mation coming respectively from the initial and boundary data, namely U= u0|Sa �= ba|t=0 =0.
In the following sections we are going to investigate the consequences of this mismatch

on the well-posedness of the problem: we will show that there are compatibility conditions
and that they must be satis�ed to guarantee the well-posedness of the Navier–Stokes problem,
once we refer to solutions possessing the lowest admissible regularity, i.e. u∈H1, see, Adams
[11], for the de�nition of Sobolev spaces.

3. COMPATIBILITY CONDITIONS AND COMPATIBILIZATION

3.1. Compatibility conditions in unsteady incompressible �ows

All the compatibility conditions for the viscous problem depend exclusively on the assumption
of the incompressibility of the �uid. Therefore in this section we will discuss their genesis
by considering the two physical models assuming a non-viscous or viscous character of the
�uid. The �rst model is associated with the incompressible Euler equations, while the second
is given by the incompressible Navier–Stokes equations introduced in Section 2. In both
cases the incompressibility of the �uid means here that a uniform and constant density is
assumed.
For inviscid incompressible �ows, two situations have to be considered, with vorticity van-

ishing or di�erent from zero. In fact, in a non-viscous �uid, the �ow is vortical whenever
the initial �ow �eld has a non-zero vorticity, whereas the velocity �eld remains irrotational
whenever the initial vorticity is zero. The latter situation represents an extreme case since
the dependence on time is fully contained in the speci�cation of the boundary condition
and no initial condition is required for velocity in the mathematical statement of the prob-
lem, as shown by Karamcheti [4, p. 249]. Thus, using the well-known property of irrota-
tional �elds, the velocity u in a simply connected domain can be represented at each time
t¿0 as u=∇�. In this case, the equations governing the irrotational motion of an inviscid
and incompressible �uid, together with the boundary condition for the normal velocity, lead
to a Neumann boundary value problem for the potential �, in the form of the harmonic
problem

∇2�=0

@�
@n

∣∣∣∣
S
= bn(rs; t) (2)

where bn(rs; t) is the normal component of velocity speci�ed on the boundary, to be solved
for any t¿0. As well-known, the Neumann problem for Laplace operator is subjected to a
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compatibility condition on its data, which, for a homogeneous equation, reads∮
S
bn(rs; t)=0 (3)

This relation is the only compatibility condition needed for the solution of any irrotational
incompressible �ow, and its physical interpretation is that the net amount of �uid through the
entire boundary must be zero for any t¿0.
The second situation of non-viscous incompressible �ows corresponds to a rotational or

vortical �ow. Let us write the equations governing this kind of �uid motion, namely, the
incompressible Euler equations:

@u
@t
+ (u ·∇)u = −∇p

∇·u = 0
u(r; 0) = u0(r)

n ·u(r; t)|S = bn(rs; t)

(4)

where u0(r) is the initial velocity �eld while bn(rs; t) is the normal component of velocity
speci�ed on the whole boundary. Exactly as in the previous case, there is a �rst compatibility
condition requiring a zero net mass �ux through the boundary for any t¿0, which is expressed
by the same global constraint (3). As far as the second condition of compatibility is concerned,
it refers only to the initial datum, u0, and states that the initial velocity �eld must be solenoidal:

∇·u0 = 0 (5)

We can observe that, since the second equation of system (4) represents an instantaneous
constraint on u(r; t), it seems perfectly legitimate to assume that the same constraint has to
be satis�ed also at the initial time t=0. Finally, there is a third condition, in which the
compatibility between initial and boundary data for the problem is imposed:

n ·u0|S = bn(rs; 0) (6)

This condition is explained, for instance, by Gresho [12, p. 397], as the application of the
incompressibility constraint on the boundary of the initial velocity �eld: if we consider a thin
layer of �uid near a small part of the boundary, the conservation of the local mass �ux is
assured only if the normal components of the initial and boundary data are equal. From a
more physical point of view, the velocity component normal to the boundary must be the
same because of the assumption of instantaneous propagation of the normal information and
stresses.
The three compatibility conditions above are necessary for demonstrating results of existence

and uniqueness of classical solutions to the two-dimensional unsteady Euler equations in a
bounded domain and for �nite time in suitable spaces of minimal regularity, as shown by
Kato [13, p. 189]. Of course, the uniqueness is intended here only up to an arbitrary function
of t, which can be added to p. The same compatibility conditions must be respected to
guarantee existence and uniqueness also of weak solutions, see the recent textbook by Taylor
[14, Theorem 3.2a, p. 489].
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Table I.

Time-dependent incompressible �ows

Inviscid and Inviscid but
Fluid model irrotational rotational Viscous �ows

Governing equations Laplace equation Incompressible Incompressible
Euler equations Navier–Stokes

Initial datum u0(r) u0(r)
Boundary datum bn(rs; t) bn(rs; t) b(rs; t)

Full set of
compatibility
conditions

∮
S bn(rs; t)= 0

∮
S bn(rs; t)= 0

∮
S n · b(rs; t)= 0

∇ · u0 = 0 ∇ · u0 = 0
n · u0|S = bn(rs; 0) n · u0|S = n · b(rs; 0)

Finally, we consider the equations governing the viscous model, shown in Section 2, i.e. the
incompressible Navier–Stokes equations (1). The initial datum u0 is prescribed in the whole
domain and the entire vector velocity is speci�ed on the boundary for t¿0, di�erently from
the non-viscous case where only its normal component is prescribed. The �rst compatibility
condition is just condition (3), modi�ed in∮

S
n ·b(rs; t)=0 (7)

because the prescribed boundary velocity b is a vector datum in the viscous case. Instead, the
presence of viscosity does not a�ect the mass conservation, so the second condition has the
same form (2). Finally, the component of the initial velocity normal to the boundary must be
equal to the velocity boundary datum projected on the normal and calculated at t=0, namely,

n ·u0|S = n ·b(rs; 0) (8)

The three compatibility conditions above have been shown by Temam [7, p. 253] and
Ladyzhenskaya [6, p. 88] to demonstrate the existence of weak solutions of minimal regularity
(u∈H1) for the incompressible Navier–Stokes problem. The same existence result is quoted
also by Taylor, see [14, Theorem 5.9, p. 510] while the additional conditions needed for
uniqueness of weak solutions for a �nite time are given by Propositions 5.10 and 5.11,
p. 511 of Reference [14].
For convenience, the various set of compatibility conditions previously discussed are �nally

summarized in Table I.
Thus, the same set of compatibility conditions on boundary and initial data holds for the

incompressible Euler and Navier–Stokes equations since these conditions are due only to the
incompressibility of the �uid, irrespectively of its viscous or inviscid character.

3.2. What is it actually intended by ‘an impulsive start’?

Historically, impulsively started �ows have been analysed without paying a speci�c attention
to the compatibility between the boundary and initial data. The consequence of their possible
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mismatch has often been described as the e�ect of the instantaneous (because of the incom-
pressibility) propagation of a pressure perturbation, from which the subsequent motion can
develop, see, for instance, Telionis [3, p. 81]. This kind of ‘physical’ interpretation dates back
to the earlier analysis due to Lamb of the impulsive generation of motion in an incompressible
�uid under quite general geometrical conditions [15, p. 10].
A source of possible di�culty in establishing the correct conditions to be imposed for

solving the initial boundary value problems for incompressible viscous �ows comes from the
central, and unfortunately deceptive, role played by the �rst Stokes problem. In fact, this
problem is often considered the basis for the interpretation of the phenomenon of the whole
class of impulsively started �ows. This is clearly an incorrect generalization, as it will be
shown below.
Let us consider a �at plate of in�nite extent that delimits a half space �lled by an in-

compressible viscous �uid initially at rest and assume that the plate can translate only in
its own plane. Let us choose a coordinate system with the x axis in the direction of the
motion, with the plate located at y=0. By the translational invariance in the x direction,
@u=@x= @v=@x= @p=@x=0, and therefore Equations (1) reduce to the following system for the
unknowns u=(u; v) and p dependent only on y and t:

@u
@t
+ v

@u
@y
= �

@2u
@y2

@v
@t
= −@p

@y
+ �

@2v
@y2

@v
@y
= 0

(9)

The last equation together with the initial and boundary conditions for the vertical velocity
component v, that is, v(y; 0)=0 and v(0; t)=0, gives v=0, identically in the entire domain.
Thus, in the �rst Stokes problem the component of velocity normal to the wall, v, vanishes
and the compatibility between the initial and boundary values supplementing (9) is trivially
ful�lled.
Now, by the second equation of (9), @p=@y=0, so p=f(t), where f is an arbitrary

function, and the system reduces to

@u
@t
= �

@2u
@y2

(10)

Assuming that the wall is subjected to an impulsive motion with a constant velocity U at
time t=0, Equation (10) is supplemented by the initial and boundary conditions

u(y; 0) = 0; y¿0

u(0; t) =U; t¿0

u(∞; t) = 0; t¿0

(11)

For t → 0 the boundary value for the tangential velocity u does not tend to the initial value,
since U �=0. A discontinuity (although a perfectly admissible one) can exist in the data for
the velocity component tangential to the boundary. The problem consisting in Equation (10)
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and conditions (11) allows a direct parallelism between the momentum balance Equation (10)
and the heat di�usion equation in one dimension, which reads

@T
@t
= k

@2T
@y2

(12)

Unfortunately, this parallelism does not translate in two- and three-dimensional situations,
where the heat equation reads

@T
@t
= k∇2T (13)

while the equations for incompressible �ows, considering for simplicity a linear version of
them, become the so-called unsteady Stokes system:

@u
@t
= −∇p+ �∇2u

∇·u = 0
(14)

Since the momentum equation of (14) is parabolic as the temperature equation, one could
suppose that the initial values and the boundary values for the velocity are fully independent,
as in the �rst Stokes problem and in the heat equation in one or more dimensions. How-
ever, this is not the case because of the incompressibility constraint and of the associated
pressure gradient present in the dynamical equation of momentum. In fact, as pointed out in
Reference [16], the unsteady incompressible equations (14) for a viscous �uid do de�ne a
parabolic problem, but only after it has been projected onto the space of solenoidal vector
�elds tangential to the boundary. This results in taking an initial velocity �eld and a boundary
velocity distribution which satisfy the compatibility conditions. It is worthwhile to note that
these conclusions are valid irrespectively of the linear or non-linear character of the equations
governing the motion of the incompressible viscous �uid. The same impulsive-�ow behaviour
characterizing the �rst Stokes problem is encountered also in more general multi-dimensional
�ows, whenever rigid walls are set in a purely tangential motion. As shown, discontinuities
on the tangential component of velocity are perfectly admissible and have no relationship with
the compatibility condition to be satis�ed by the normal velocity in truly multi-dimensional
incompressible �ows.
On the other side, there are several instances of multidimensional �ows produced by an

impulsive motion of the wall(s) such that the initial and boundary data do violate the com-
patibility condition for the normal component of velocity on the boundary. In these cases the
original statement of the initial boundary value problem for incompressible �ows is ill-posed
and it is necessary to modify the initial velocity �eld conveniently to have compatible data,
in the manner to be described below. As a result of this modi�cation, a discontinuity between
the tangential components of velocity of the modi�ed initial condition and of the prescribed
boundary values can be produced, but this occurrence does not jeopardize the well-posedness
of the modi�ed problem.
In conclusion, the same banner of ‘impulsively started �ows’ is used to encompass two

di�erent classes of unsteady incompressible �ows. The �rst class includes �ows, with the �rst
Stokes problem as the prototype, which are characterized by a discontinuity of the tangential
velocity on the boundary at the initial time, and therefore are ab initio well-posed problems
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not requiring any pre-processing of the initial and boundary data. The second class includes
instead �ows in which the impulsive motion of the boundary, or of some part of it, implies
a violation of the compatibility condition for the normal component of velocity and therefore
the ill-posedness of the corresponding mathematical problem. It is to this second class of
�ows that the airfoil problem here considered belongs to, since we have n · v0|Sa �= n ·ba|t=0,
where v0 denotes the incompatible initial velocity.

3.3. Construction of compatible data

Let us suppose that the initial velocity �eld of the Navier–Stokes problem, denoted here v0,
does not respect the compatibility conditions to be satis�ed in incompressible �ows, according
to the previous analysis. For the sake of generality, we allow v0 to violate either the condition
of solenoidality, i.e.

∇· v0 �=0
or the condition of compatibility between the initial and boundary data, i.e.

n · v0|S �= n ·b|t=0
or both. Considering, for instance, an initial velocity �eld uniform in the whole �uid domain
including the surface of the airfoils, we are violating the compatibility condition above since
the velocity boundary value on the airfoil is necessarily zero at all times.
The consequence of using this combination of incompatible initial and boundary data in the

numerical solution of the Navier–Stokes equations is illustrated in Figure 2 which shows a
zoom of the velocity �eld computed at the second time step for Re=1000 by the projection
method to be described in Section 4.1. The non-sensical character of the computed �ow
�eld in the zoomed area including the vane and part of the main �ap, is made evident by the
occurrence of a velocity directed outward and inward the two sides of the main �ap. We notice
furthermore the presence of a strange stagnation point in the interior of the �uid, detached
from the surface of the airfoil. Other unsatisfactory �ow features, although less pronounced,
are encountered near and around the other components of the multi-pro�le.
To have a well-posed problem, the initial (incompatible) velocity �eld v0 must be re-

placed by another vector �eld respecting the compatibility conditions. This can be achieved by
simply resorting to the celebrated orthogonality theorem due to Ladyzhenskaya [6, Section 2,
Theorem 1, p. 27]. The theorem states that every vector �eld of L2(V ) de�ned on any bounded
simply connected domain V ⊂R2 (or ⊂R3) admits a unique orthogonal decomposition into
a gradient �eld and a solenoidal �eld tangential to the boundary. The orthogonality is to be
intended in the sense of the scalar product in the Hilbert space of square summable vector
�elds. In practical applications, for general non-zero normal velocity on the boundary the
theorem is still e�ective although the decomposition is no more orthogonal.
Thus, we decompose any v0 ∈L2(V ) as follows v0 = − ∇�+ u0, where u0 is a solenoidal

vector �eld with a speci�ed normal component on the boundary. The corrected initial velocity
u0 is therefore given by u0 = v0+∇�, where the scalar function � is to be determined so that
the two aforementioned conditions for u0 are satis�ed. By substituting u0 in the compatibility
conditions ∇·u0 = 0 and n ·u0|S = n ·b|t=0, we obtain

−∇2�=∇· v0; n ·∇�|S = n ·b|t=0 − n · v0|S (15)
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Figure 2. Particular of the velocity �eld after an impulsive start with incompatible data, at the second
time step (�t=0:001) for Re=1000.

This represents a Poisson equation for variable �, supplemented by a Neumann boundary
condition, whose solution yields the �eld ∇� for correcting the original initial velocity v0.
As far as the solvability of the Neumann problem for the Laplace operator is concerned,

the source term and the boundary values of the normal derivative are subjected to a single,
global, condition, which in the present situation reads∫

∇· v0 dV = −
∮
n · (b|t=0 − v0|S) dS

This condition is satis�ed thanks to the divergence theorem and since the boundary datum
b respects the global constraint

∮
n ·b dS=0 at t=0, by the hypothesis. Thus, provided that

the global condition of zero �ux across the entire boundary is satis�ed and once the original
initial velocity v0 �eld has been replaced by u0, the data of the modi�ed problem respect all
of the compatibility conditions.
We observe that, when the initial velocity �eld v0 is already solenoidal but is not compatible

with the boundary datum at time t=0, the function � represents actually the potential of a
velocity correction to be added to v0: in this case � can be denoted by � solution to the
Laplace equation ∇2�=0. If v0 is uniform, as in our airfoil problem where v0 =U in the
whole domain, the compatible initial velocity �eld is given by u0 =U +∇�. In this case,
u0 turns out to be nothing but the potential velocity �eld past the pro�le associated with
the uniform �eld U at large distance and a zero normal velocity on the pro�le (irrotational
�ow without circulation). In fact, for an impulsively started pro�le the initial velocity v0 is
incompatible with the velocity boundary conditions, and we have: v0 =U in V , u|Sext =U but
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u|Sa = 0. As a consequence, the Neumann problem (15) becomes

∇2�=0; n ·∇�|Sext = 0; n ·∇�|Sa =−n ·U (16)

and therefore we have, on the one hand, n ·u0|Sext = n · (U + ∇�)|Sext = n ·U, and, on the
other, n ·u0|Sa = n · (U+∇�)|Sa = 0. In physical terms, the construction can be interpreted by
saying that in an impulsively started �ow the proper initial condition for the Navier–Stokes
problem is determined by the potential �ow that establishes itself instantaneously, by virtue
of the incompressibility, in response to the sudden motion of the boundary. This interpretation
corresponds precisely to the analysis by Lighthill [1, p. 80] and by Telionis [3, p. 81]. In
Figure 3 (left) we represent the streamlines of the compatible initial velocity �eld u0.
Observing the �ow �eld shown in Figure 3, we notice that the downstream stagnation points

on all the airfoils, but for the slat, are not located at the trailing edges. This is a consequence
of the fact that the initial velocity �eld has been assumed to be a potential �ow. In other
words, an arbitrariness in the choice of a compatible initial velocity exists whenever the �ow
domain is, as in the present case, multiply connected. In fact, there is an in�nite number of
inviscid incompressible �ow �elds in two dimensions satisfying the compatibility conditions
which are characterized by the di�erent values of the circulation around each airfoil. For
instance, choosing these values so that the downstream stagnation points coincide with the
trailing edges would lead to another compatible and mathematically admissible initial datum,
which would be also in accordance with Kutta condition.
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Figure 3. Streamlines (left) and Bernoulli pressure (right) of the initial
�ow after the construction of compatible data.
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It should be noted that the modi�cation of the initial velocity �eld, as anticipated in the
previous section, can cause a discontinuity in the tangential components of the velocity on
the boundary, namely, n× u0|S �= n× b|t=0. For an impulsive start, the discontinuity of the
tangential component of the (compatible) initial velocity u0 on the boundary implies that a
in�nitely thin layer of in�nite vorticity is present around the body at the initial time. This is
the well-known phenomenon of vorticity generation on rigid boundaries. Such a discontinuity
is allowed in the solution of the viscous incompressible problems, although it produces a blow
up of the H 1 norm of the velocity solution as t → 0, for details see Reference [16].
Finally, we present the pressure distribution associated with the compatible velocity �eld

obtained by means of the proposed pre-processing of the initial velocity datum.
As a matter of fact, an initial condition for pressure is not required by the mathematical

statement of incompressible �ows. However, the numerical solution by means of an incre-
mental fractional-step algorithm needs a starting pressure whenever the incremental scheme
is used also at the �rst time step. According to our procedure for respecting the compatibility
conditions, the modi�ed velocity �eld at t=0 is determined by solving the Laplace equation.
Therefore, we assume arbitrarily that Bernoulli’s relation, valid for steady irrotational �ows
of an incompressible inviscid �uid, can be employed to characterize the starting pressure
�eld, namely, p0 + |u0|2=2=C, where C is an arbitrary constant (for a discussion about the
choice of the initial pressure see Gresho [12, p. 736]). The application of this relation yields
explicitly:

p0(r)=−|u0(r)|2
2

+ C= − |U+∇�(r)|2
2

+ C (17)

The pressure �eld p0 of the impulsively started �ow past the penta-pro�le is shown in Figure 3
(right).
For the sake of completeness, recalling the Neumann boundary value problem (16) for the

velocity potential �, its variational form is∫
V

∇w ·∇�=
∫
Sext

w
@�
@n
+
∫
Sa
w

@�
@n

(18)

where the integration surface has been split in two parts Sext and Sa. Substituting the boundary
conditions on the right-hand side, the spatially discretized counterpart of the weak formulation
of the problem (18) reads
Find �h ∈Xh ⊂H 1(V ) such that, for any test function wh ∈Xh ⊂H 1(V )

(∇wh;∇�h)=−
∫
Sa
wh n ·U (19)

For convenience, we are assuming that �h is approximated by the same quadratic �nite element
interpolation that will be used for the velocity components in the projection method, as ex-
plained in the following section. From the so-computed solution �h, we determine the compat-
ible initial velocity �eld uh;0 on the triangulation through the relation uh;0 =U+∇�h, which,
once expressed in weak form, becomes: (wh; uh;0)= (wh;U +∇�h), for any vector function
wh ∈Xh ⊂H1(V ). This vector equation leads to two mass problems to determine the compati-
ble initial velocity. From the nodal values of uh;0, the Bernoulli relation allows one to calculate
the nodal values of the pressure of the initial potential �ow: ph;0(r)=−|uh;0(r)|2=2 + C. In
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Figure 4. Particular of the velocity �eld after an impulsive start with compatible data,
at the second time step (�t=0:001) for Re=1000.

accordance with the analysis of the following section, this pressure �eld is linearly interpo-
lated over the triangulation of the domain, to provide the initial pressure required at the �rst
time step by the second-order incremental projection method, see below.
In Figure 4 we report the zoom of the velocity �eld for Re=1000 computed by the

projection method, starting from compatible initial and boundary data and using Bernoulli
pressure as initial condition, at t=2�t, for �t=0:001. The behaviour of the �ow �eld is in
accordance with the physical expectations: a stagnation point is clearly seen on the upstream
surface of the �ap and the velocity near the two shown airfoils is found to posses the correct
direction and intensity. The acceleration and �ow development in the gap between the vane
and �ap is consistent with the e�ect of viscosity at the sharp trailing edge, which was not
the case for the incompatibly started �ow shown in Figure 2 at the same time step.

4. NUMERICAL METHOD

4.1. Second-order projection method

In this section we will brie�y recall the incremental projection method of Guermond and
Quartapelle [8, 9] used here to compute the impulsively started �ows past airfoils. A de-
tailed description of this projection method under general boundary conditions with conver-
gence results and error estimates valid for spatial discretization by �nite elements is given in
References [8, 9]. An exhaustive analysis of the numerical properties of this scheme in the
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context of the incremental projection method has been accomplished by Guermond in
Reference [17]. In the same reference, the three-level BDF scheme has been selected as
a very convenient time-marching method to bene�t from better stability properties than those
of the commonly used Crank–Nicolson scheme, which is only marginally stable. To guarantee
an unconditional stability, i.e. to avoid any restriction on the time step �t, the advection term
(u ·∇)u is replaced by its well-known skew-symmetric form (u ·∇)u+ 1

2(∇·u)u, evaluated
semi-implicitly. In this way, the weak form of the momentum equation is guaranteed not to
introduce any error in the kinetic energy of the spatially discrete solution. The uncondi-
tional stability of the second-order BDF scheme is maintained in the non-linear regime by
approximating the new advection velocity uk+1 with its linearly extrapolated counterpart:
uk+1? =2uk−uk−1, where the superscript index k refers to the time level tk . The skew-symmetric
form used in the numerical scheme will be:

(uk+1? ·∇)uk+1 + 1
2(∇·uk+1? ) uk+1

The three-level BDF scheme will be used after the �rst two-level step in incremental form,
leading, for k¿1, to the following advection–di�usion step:

3uk+1 − 4i tûk + i tûk−1

2�t
− �∇2uk+1 + (uk+1? ·∇)uk+1 + 1

2(∇·uk+1? )uk+1 =−∇pk

uk+1|S = bk+1
(20)

and to the incremental projection step of second-order time accuracy:

3ûk+1 − 3iuk+1

2�t
+ ∇̂(pk+1 − pk)=0

∇̂ · ûk+1 =0

n · ûk+1|S = n ·bk+1
(21)

The �nal velocities ûk and ûk−1 are eliminated from the solution algorithm. The advection–
di�usion step for k¿1 takes the following form in practice:

3uk+1 − 4uk + uk−1

2�t
− �∇2uk+1 + (uk+1? ·∇)uk+1 + 1

2(∇·uk+1? )uk+1

=−




∇(3p1 − 2p0) for k=1

1
6 ∇(14p2 − 11p1 + 3p0) for k=2

1
3 ∇(7pk − 5pk−1 + pk−2) for k¿3

uk+1|S = bk+1

(22)

and the projection step, formulated as a Poisson problem, reads:

−∇̂2
(pk+1 − pk) = − 3

2�t
∇·uk+1

@(pk+1 − pk)
@n

∣∣∣∣
S
=0

(23)
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The two special expressions for the pressure extrapolation for k=1 and 2 in the advection–
di�usion step are due to the elimination of the �rst end-of-step velocity by means of the
special relation û1 = i; u1 + �t ∇̂(p1 − p0) of the �rst incremental projection step.
To develop the �nal solution algorithm, the two problems (22) and (23) are �rst recast

in a variational form by means of the Galerkin method, by taking their scalar product with
suitable weighting functions.‡ The weak equations are then written in a spatially discrete form
by introducing a triangulation of the computational domain and approximated versions of the
spaces for the (intermediate) velocity and the pressure.
The fully discrete weak form of the advection–di�usion step (22) reads:
For k¿3, �nd uk+1h ∈Xh, with uk+1h |S = bk+1 such that, for all vh ∈Xh, with vh|S =0,

(
vh;
3uk+1h − 4ukh + uk−1h

2�t

)
+ �(∇vh;∇uk+1h )

+(vh; (uk+1h;? ·∇)uk+1h + 1
2(∇·uk+1h;?)u

k+1
h )

=− 1
3 (vh;∇(7pk

h − 5pk−1
h + pk−2

h )) (24)

Finally, the fully discrete form of the projection step (23) is
For k¿1, �nd (pk+1

h − pk
h)∈Nh such that, for all qh ∈Nh,

(∇qh;∇(pk+1
h − pk

h))=− 2
3�t

(qh;∇·uk+1h ) (25)

We assume a parabolic approximation for velocity and a linear approximation for pressure.
The second-order BDF projection scheme described above is completed by specifying the

set of boundary conditions for velocity and pressure which are appropriate for the penta-pro�le
problem considered here. To this purpose we truncate the in�nite domain by a rectangle large
enough to contain the multiple airfoil positioned nearly at the center of the region. The
in�ow, out�ow, bottom and top sides of this rectangle will be denoted by Sin, Sout, Sbottom and
Stop.
First of all, the no-slip condition on the airfoil is applied, i.e. uk+1h |Sa = 0. Then, from the hy-

pothesis of a uniform x̂-oriented velocity �eld on the in�ow side, we derive uk+1h |Sin =U=U x̂.
Furthermore, if the external boundary is supposed to be far enough from the airfoils, one
can assume that no velocity perturbation in the ŷ direction exists on the frontiers, namely,
� ·uk+1h |Sout = 0, n ·uk+1h |Stop∪Sbottom = 0 and @(� ·uk+1h )=@n|Stop∪Sbottom = 0. It is �nally possible to re-
sort to the incompressibility constraint and specify ∇·uk+1h |Sout = 0 on the out�ow bound-
ary; this last condition, by virtue of � ·uk+1h |Sout = 0, simpli�es to the Neumann condition
@(n ·uk+1h )=@n|Sout = 0, which is an uncoupled condition for the horizontal velocity.

‡We use the scalar product notation for scalar functions (q; p)≡ ∫
V qp dV as well as for vector functions

(v; u)≡ ∫
V v · u dV . Moreover, we de�ne also (∇v;∇u)≡ ∫

V

∑d
i = 1

∑d
j = 1 (@vj=@xi)(@uj=@xi) dV , where d=2

(or d=3) is the number of spatial dimensions.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:877–902



CALCULATION OF INCOMPRESSIBLE VISCOUS FLOWS 893

Figure 5. Particular of the velocity �eld after an impulsive start for Re=1000. Repre-
sentation of the end-of-step velocity û2h at the second time step (�t=0:001). Left plot:

incompatible data; right plot: compatible data.

The Poisson equation of the projection step is supplemented by a Dirichlet condition for
the pressure on the out�ow side, pk+1 =0, and a homogeneous Neumann condition on the
remaining part of the boundary, namely, on Sin ∪ Stop ∪ Sbottom ∪ Sa.
Incidentally, it is interesting to verify how the ill-posedness a�ects also the end-of-step

velocity generated by the projection method. The examination of the shots taken at t=2�t=
0:002 shows that the end-of-step solution computed starting from incompatible data (left plot
of Figure 5) has an even worse behaviour than the intermediate velocity computed under the
same initial conditions (Figure 2 of Section 3.3). First, the boundary condition on velocity
is violated by both the normal and tangential components. This is a consequence of having
contrived arti�cially the end-of-step velocity within a space of too high a regularity. In fact,
for instance, the �eld û2h given by relation

û2h= i; u2h − 2�t
3

∇̂(p2h − p1h)

is evaluated in the same space of u2h by means of the weak equivalent of this equation. This
amounts to solve two mass matrix problems for the Cartesian components of the velocity on
the parabolic grid.
Moreover, a fully unphysical backward velocity of the �uid is observed near the front

edge of the main �ap. The intermediate and end-of-step velocity �elds obtained starting from
compatible data can be compared by examining the right plot of Figure 5 with the plot of
Figure 4. In the leading-edge regions we notice that the end-of-step velocity �eld shows a
slight mismatch with the correct zero boundary condition.
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The comparison clearly illustrates the fundamental role of the step used to enforce compat-
ibility, even for the end-of-step velocity which does not satis�es the zero velocity condition
at the leading edge of the airfoils due to the aforementioned reasons.
This section is concluded by a brief explanation of the method used to evaluate the vor-

ticity �eld and the streamlines, which are useful to represent the �uid motion caused by
the impulsive start of the multi-pro�le. At any time the vorticity is simply given by the
de�nition �=∇ × u, which in two dimensions can be written in discretized weak form as:
(wh;!h)= (wh; ẑ ·∇ × uh). Given the velocity �eld uk+1h , the �nite element equations are ex-
pressed by the linear system M�k+1 =Fk+1, where M is the mass matrix, �k+1 is the unknown
vector of the nodal values of vorticity and Fk+1 is the L2 projection of ẑ ·∇ × uk+1h onto the
space of the test functions.
On the other hand, any solenoidal velocity �eld u in two dimensions can be expressed in

terms of a scalar function  , called stream function, according to u=∇ × ẑ, namely, in terms
of the velocity components: u= @ =@y and v=−@ =@x. Taking the curl of this relation leads
to the Poisson equation for the stream function −∇2 = ẑ ·∇ × u. The discretized weak form
of this equation is (∇wh;∇ k+1

h )= (wh; ẑ ·∇ × uk+1h )+
∫
S wh (@ k+1

h =@n) ds, where the surface
integral depends on the kind of the boundary conditions, which are deduced from the value
assumed by the velocity on the boundary S, namely, from u|S = b. The velocity vector b being
known on S, it provides two di�erent boundary conditions for  k+1

h : the normal component
gives @ k+1

h =@s|S = n ·bk+1, while the tangential component implies @ k+1
h =@n|S = − � ·bk+1.

Correspondingly, two alternative boundary value problems can be formulated for the scalar
unknown  k+1

h . The former is a Poisson equation supplemented by Dirichlet conditions on
the boundary but for the out�ow side Sout, while the latter is an equation supplemented by
Neumann conditions on the entire boundary. As well-known, the constant value assumed by
the stream function on each airfoil of the multi-pro�le is related to the mass rate of �uid
passing between the airfoils and is given by a line integral of the velocity �eld. Only after
these values have been computed, the boundary data of the Dirichlet problem are complete.
We have solved both the Dirichlet and the Neumann boundary value problem. The stream
values on the airfoils provided by the two alternative formulations yield to a di�erence less
than 4 percent.

4.2. Post-processing procedure

The solution of the projection method is a�ected by a time-splitting error due to the fractional-
step nature of the time discretization scheme. It is therefore worthwhile to investigate whether
it is possible to compute a pressure �eld a�ected by a smaller error of this nature by resorting
to an ‘unsplit’ form of the momentum equation.
Actually, once the velocity �eld has been computed, we can consider the momentum equa-

tion with the pressure gradient taken as unknown, rather than evaluating this term explicitly
from the extrapolated pressure �eld of the projection step. By expressing the viscous term
as the double curl of the velocity solution to the projection method, the momentum equation
can be used to obtain a weak form of an elliptic problem for pressure which embodies ho-
mogeneous Neumann boundary condition, quite naturally. It is important not to confuse this
(weak) elliptic problem with the (strong) Poisson equation for pressure which could be de-
rived by taking the divergence of the momentum equation and exploiting the incompressibility
condition. The solution of the Poisson equation would in fact require boundary conditions for
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pressure. As well-known, such conditions do not exist for the continuum problem and are
di�cult to be achieved in the discrete case, particularly when a spatial approximation of local
type is employed, as in the present work.
Following this reasoning, let us consider the momentum equation for two-dimensional �ows

with the viscous term written as the double curl of the velocity, namely,

@u
@t
+ (u ·∇)u=−∇p − �∇ ×∇ × u (26)

Multiplying this equation by ∇v, ∀v∈H 1(V ), integrating by parts the �rst term, using the
incompressibility condition ∇·u=0 and the velocity boundary condition for the normal com-
ponent, we obtain

(∇p;∇v) = −((u · (∇)u;∇v) + �
∮
S
∇ × u � ·∇v dS −

∮
S

@(n ·b)
@t

v dS (27)

∀v∈H 1(V ). This equation can be solved to determine the pressure �eld p=pk at time tk
from the velocity u= uk and vorticity !=!k (here p=pk should not be confused with
that generated by the projection method). There is still an open question: what is the more
appropriate approximation for the new pressure? Looking at Equation (27), all integrands
in the right-hand side are given by a parabolic approximation but, as remarked before, the
pressure in incompressible �ows cannot be of the same regularity as velocity. The convergence
tests which follow, based on the exact solution (28), suggest a possible answer to the question,
although we will make no attempt here in the direction of a mathematical proof.

4.3. Convergence tests

The theoretical second order accuracy of the three-level BDF scheme [17] can now be checked
by numerical tests on the following analytical solution in the unit square �= [0; 1]2:

uex =− cos x siny g(t)

vex = sin x cosy g(t)

pex =− 1
4 [cos(2x) + cos(2y)]g

2(t)

(28)

where g(t)= sin(2t). Setting the velocity in the form uex = 	u(x; y) g(t), the source term
corresponding to the Navier–Stokes equation is f = 	u(x; y)[g′(t) + (2g(t)=Re)]. The Reynolds
number is set to 100 and two meshes composed, respectively, by 2× 202 and 2× 402 triangles
are used. Figure 6 shows the maximum value in time, over 06t61:5, of the error in L2 norms
for the pressure and the error in H 1 and L2 norms for the velocity. Comparing the curves
with the second order slope plotted in the �gures, we can appreciate the accordance between
the theory and the numerical tests. The di�erent saturations of the errors as �t → 0 are due
to the spatial discretization error, which is of order h2 for the velocity in the H 1 norm and
h3 in the L2 norm, of order h3 for the pressure in the L2 norm.
In Figure 7 we plot the errors in the L2 norm for three di�erent pressure �elds at t=1

obtained by means of the projection method (linear) and by means of the spatially discrete
version of Equation (27) with a linear or parabolic approximation over the same grids em-
ployed for the previous convergence test. The order of accuracy in time of both new pressure
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Figure 6. Convergence tests for the second order BDF projection method. Analytical test problem with
Re=100. Finite element meshes of 2× 202 (left) and 2× 402 (right) triangles.

�elds is the same as in the projection method, with a smaller error constant in both cases. A
more evident improvement emerges looking at the saturation of the error due to the spatial
discretization: the linear approximation saturates to a value only slightly smaller than the one
of the projection method, while the saturation value of the parabolic approximation is smaller
by more than one order of magnitude. In the next section the new pressure �elds over the
penta-pro�le will be computed to assess the relevance of this convergence test for actual
simulations.

5. SOME COMPARISONS

The aim of this section is to compare the numerical results of the projection method with
those obtained by the weak  -! (harmonic) formulation presented in Reference [10] and
to analyse the in�uence of the procedure for the compatibility as the time of the solution
goes on. The aerodynamic con�guration considered in that work is the same that we have
adopted in the present study. We perform calculations with the same value of Re=1000 and

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:877–902



CALCULATION OF INCOMPRESSIBLE VISCOUS FLOWS 897

Figure 7. Convergence tests for the pressure. Analytical test problem with Re=100. Finite element
meshes of 2× 202 (left) and 2× 402 (right) triangles. The notation pp:m:; pP1 ; pP2 stands, respec-
tively, for the pressure of the projection method and the pressure calculated by means of the ‘unsplit’

momentum equation (27) with linear and parabolic interpolations.

an equivalent mesh consisting of about 14 800 triangles to be compared with the mesh of
15 000 triangles employed in Reference [10].
In Figure 8, the streamlines and the vorticity �eld are presented: the variables  and ! are

not unknowns of the projection method and have been calculated from the velocity �eld uk+1h
as described at the end of Section 4.1. The agreement between the solutions obtained by the
two completely di�erent numerical schemes exceeds our best expectations.
Another interesting comparison can be done for the pressure coe�cient cp ≡ (p − p∞)= 12U

2.
As clearly shown in Figure 9 (top), a remarkable di�erence of the solutions is primar-
ily concentrated on the lower surface of the airfoils where the coe�cient of pressure de-
duced from the projection method exceeds the value 1 which is characteristic for a stagnation
point. A possible justi�cation of this discrepancy is that the pressure �eld is a�ected by the
time-splitting error due to the particular ‘half-stepping’ scheme employed in the projection
method.
In the middle and bottom plots of the same Figure 9 the cp curves of the post-process

pressure �elds based on respectively linear and parabolic interpolations are compared with
the reference results by the  -! algorithm. The linear pressure has an agreement with the
reference cp very similar to that just seen for the (linear) pressure of the projection method,
but now the value of cp on the lower surface is slightly underestimated instead of overes-
timated. The size of these di�erences is however comparable, in conformity with the pres-
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Figure 8. Streamlines (top) and vorticity (bottom) for Re=1000 at t=2. Left: solution obtained by
the projection method. Right: solution obtained by the  -! harmonic method [10].

sure errors found for the analytical test case of Section 4.3, see Figure 7. The comparison
for the parabolic pressure is much more satisfactory, particularly on lower surface of the
airfoils. The conclusion is that the more expensive parabolic interpolation for the pressure
of the post-processing phase yields the highest accuracy among the three considered pres-
sures, as predicted by the error analysis and the numerical tests conducted in the previous
section.
Finally, it is worthwhile to analyse the di�erent evolution of solutions provided by the

projection method starting from compatible and incompatible initial data, in the course of the
simulation. In Figure 10 we plot this di�erence in L2 and H 1 norms for the velocity and in
L2 norm for the pressure. In the �rst iterations the di�erence is remarkable especially for the
pressure and becomes obviously smaller as k increases. Therefore if one is not interested to
the solution at the �rst iterations of the simulation the pre-processing procedure is not strictly
necessary. Nevertheless incompatible initial data could cause the numerical method to diverge
at the �rst iterations.
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Figure 9. Pressure coe�cient on the multi-pro�le airfoil for Re=1000 at t=2. Top: comparison
of the solution by the projection method with the solution by the  -! method [10]. Middle and
bottom: pressure evaluated directly from the momentum equation projected onto ∇H 1 with P1 and P2

approximations respectively, compared to the  -! solution [10].

6. CONCLUSIONS

This work has demonstrated that the integration of the time-dependent Navier–Stokes equations
for the primitive variables by a numerical method requires a proper analysis of the issue of
the compatibility of the initial and boundary data for the velocity. Although the mathematical
principles underlying such compatibility conditions are �xed in the most established theoretical
literature on the Navier–Stokes equations, their implications on the numerical side have often
been underestimated. In the particular case of a velocity on the boundary increasing smoothly
with the �uid at rest initially, disregarding the compatibility between the boundary and initial
conditions has no consequences, as it is trivially satis�ed, both data being null on the boundary
at t=0. On the contrary, when an immersed body is started instantaneously, the analysis of the
compatibility is mandatory for developing a proper numerical scheme free from a pathological
behaviour in the start-up phase of the �uid motion. To realize the precise meaning of an
impulsively started �ow, we have considered the �rst Stokes problem and have shown that
it represents a degenerate kind of impulsive start inadequate to illustrate the ill-posedness of
problems where walls of arbitrary shape are suddenly set in motion with a velocity component
normal to their surface.
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Figure 10. Error between the solutions with compatible (ukh) and incompatible (ũ
k
h) initial data over the

iterations k. Solutions obtained with the projection method, Re=1000 and �t=0:001. The notation for
the relative error means rel.err. (fk

h )norm = ‖fk
h − f̃k

h ‖norm=‖fk
h ‖norm.

In this work we have introduced a procedure for enforcing the compatibility in �ows
within an arbitrarily shaped two-dimensional region, that modi�es the initial velocity �eld
to ensure the matching between the normal components of the initial velocity and of the
boundary condition at t=0, so as to guarantee the well-posedness of the initial-boundary
value problem for incompressible �ows. The cost of such a procedure is that of solving a
simple Poisson equation for a velocity potential in a pre-processing phase of the calculations.
This procedure restoring the compatibility has been developed to complement a projection
method of incremental type which uses a second-order BDF time discretization and a �nite
element spatial discretization [8, 9]. The �rst time step of the incremental scheme involves the
pressure �eld at t=0, and it has been shown that the Bernoulli pressure associated with the
stationary �ow of the compatible initial velocity can be employed successfully to account for
the pressure build-up in impulsively started �ows. We have also introduced the idea of post-
processing the velocity solution provided by the projection method. A pressure �eld alternative
to that given by the projection step can in fact be obtained from the velocity solution of the
projection method, considering linear or quadratic interpolations.
As a representative example, we have applied the projection method to the simulation of the

�ow past a multiple airfoil, to compare our solutions with those provided by other methods.
The correctness of all the algorithms implemented here has been veri�ed by comparing the
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Figure 11. Starting vortices leave the trailing edges of the penta-pro�le at t=0:02 for Re=10 000.
Top: streamlines (left) and pressure �eld (right). Bottom: velocity �eld.
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solution of the projection method for Re=1000 with results provided by a completely di�erent
numerical method for solving the Navier–Stokes equations in two dimensions using non-
primitive variables [10]. The comparison of the streamlines near the multi-pro�le on the
airfoil surfaces, for a geometrical con�guration characterized by sharp trailing edges and by
the vertical incidence of the auxiliary �ap, has been found to be fully satisfactory, especially
considering the occurrence of several recirculating bubbles and the massive separation. As far
as the pressure coe�cient is concerned, we have shown that the alternative pressure �eld based
on the parabolic approximation yields the best agreement with the pressure �eld extracted from
the solution to the non-primitive variable equations.
The agreement has been carefully checked at times not very close to the beginning of the

motion, since for very small t an accurate representation of the starting vortex(ices) would
require a speci�c modelling in the region of the trailing edge(s), which was outside the
scope of the present work. Nevertheless, in Figure 11 we report the starting vortices near
four trailing edges of the multi-pro�le for Re=10000 at an early time t=0:04. The expected
starting vortices have been already formed and are correctly drawn downstream. In any case,
before trying to modify or enrich the mathematical model for handling complicated physical
situations like those shown by the �gure, we feel important and highly recommendable to
check the coherence of the mathematical statement of the unsteady incompressible problem
so that it can be continuously solvable in the sense of Hadamard. Only after this preliminary
logical step has been overcome, one can hope to represent the original viscous incompressible
�uid dynamic problem in a discrete form with an increasing order of accuracy both in space
and in time.
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